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Abstract
We continue our investigation of the Baxter–Bazhanov–Stroganov or τ (2)-
model using the method of separation of variables (von Gehlen et al 2006 J.
Phys. A: Math. Gen. 39 7257, 2007 J. Phys. A: Math. Theor. 40 14117). In
this paper we derive for the first time the factorized formula for form-factors of
the Ising model on a finite lattice conjectured previously by Bugrij and Lisovyy
(2003 Phys. Lett. A 319 390, 2003 J. Theor. Math. Phys. 140 987). We also
find the matrix elements of the spin operator for the finite quantum Ising chain
in a transverse field.

Dedicated to Professor Anatoly Bugrij on the occasion of his 60-th birthday

PACS numbers: 75.10.Hk, 75.10.Jm, 05.50.+q, 02.30.Ik

1. Introduction

The Baxter–Bazhanov–Stroganov (BBS) model [5, 6] (also called the τ (2)-model, see
e.g. [7, 8]) is associated with the cyclic L-operators [6, 9, 10] which act in a two-dimensional
auxiliary space

Lj(λ) =
(

1 + λ�j vj λu−1
j (aj − bj vj )

uj (cj − dj vj ) λaj cj + vj bjdj /�j

)
, (1)
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where λ is the spectral parameter, and at each site j = 1, . . . , n we have five parameters
aj , bj , cj , dj and �j . At each site there is also an ultra-local Weyl algebra with elements uj

and vj obeying

uj uk = ukuj , vj vk = vkvj , uj vk = ωδj,k vkuj ,

ω = e2π i/N , uN
k = vN

k = 1, N ∈ Z�2.

Since ω is a root of unity, the Weyl operators can be represented naturally by matrices acting
in the tensor product

(
C

N
)⊗n

[1, 2]. The monodromy matrix of the model is defined by

Tn(λ) = L1(λ)L2(λ) · · ·Ln(λ) =
(

An(λ) Bn(λ)

Cn(λ) Dn(λ)

)
, (2)

and the transfer matrix is its trace in the auxiliary space tn(λ) = tr Tn(λ) and gives rise to a
set of commuting non-local and non-Hermitian Hamiltonians of the model:

tn(λ) = An(λ) + Dn(λ) = H0 + H1λ + · · · + Hn−1λ
n−1 + Hnλ

n.

Commutativity follows from the intertwining of Lk(λ) by the asymmetric 6-vertex model
R-matrix at root of unity.

In the present paper our focus will be on the case N = 2. As has been shown in [11],
in this case the BBS model is related to a generalized Ising model with plaquette Boltzmann
weights

W(σ1, σ2, σ3, σ4) = a0

⎛⎝1 +
∑

1�i�j�4

aijσiσj + a4σ1σ2σ3σ4

⎞⎠ , (3)

subject to the free-fermion condition a4 = a12a34 − a13a24 + a14a23.

Generalizing Sklyanin’s method of separation of variables (SoV) [12–14], in [1, 2] we
have worked out a method to find common eigenvectors of the Hamiltonians Hm. This
proceeds in two steps6:

• Since [B(λ), B(µ)] = 0, the off-diagonal element B(λ) of the monodromy matrix (2)
gives rise to an auxiliary set of commuting operators hm: B(λ) = h1λ+ h2λ

2 + · · ·+ hnλ
n.

We construct their common right eigenvectors |�ρ〉 (the left eigenvectors 〈�ρ| are obtained
analogously) by an inductive procedure over the chain size n, starting from the one-site
model. The eigenvalues of B(λ) form a polynomial in λ of degree n, and from the
intertwining relations we can show that

B(λ)|�ρ〉 = λr0ω
−ρ0

n−1∏
k=1

(λ + rkω
−ρk )|�ρ〉, ρ = (ρo, ρ1, . . . , ρn−1), (4)

where the amplitudes (r0, r1, . . . , rn−1) can be expressed in terms of the parameters of the
model aj , . . . , �j , and we can use the phases ρ, ρk ∈ ZN , of the zeros

νk = −rkω
−ρk , k = 1, . . . , n − 1, (5)

of the eigenvalue polynomial for labelling the eigenvectors.
• Having solved the auxiliary problem, after a Fourier transformation of ρ0 to ρ (ρ labels

the ZN -charge sectors), the eigenvalue problem of t(λ) = A(λ) + D(λ) is reduced to
the solution of Baxter equations. Using that A(νk) and D(νk) are raising and lowering
operators on the auxiliary states |�ρ〉, we find that the periodic eigenstates |�ρ,E〉 in

t(λ)|�ρ,E〉 = t (ρ)(λ|E)|�ρ,E〉, E = {E1, . . . , En−1}
6 We consider a fixed chain length n, mostly suppressing the subscript n, which had been written explicitly in our
previous papers, so rk ≡ rn,k and ρn ≡ ρn,k of [1, 2], etc.

2



J. Phys. A: Math. Theor. 41 (2008) 095003 G von Gehlen et al

with the eigenvalue polynomial t (ρ)(λ|E) = E0 + E1λ + · · · + Enλ
n (where E0 and En are

directly known, see (20)) are obtained via the kernels QR in

|�ρ,E〉 =
∑
ρ0,ρ′

ω−ρ·ρ0QR(ρ′|ρ, E)|�ρ0,ρ′ 〉, ρ′ = (ρ1, . . . , ρn−1). (6)

The crucial fact is now (SoV) that after splitting off a known function f (ρ′), the n − 1-
variable function QR(ρ′|ρ, E) factorizes into single-variable functions QR

k (ρk) (the ρk are
the components of ρ′, we often skip the charge index ρ of the QR

k etc):

QR(ρ′|ρ, E) = f (ρ′)
n−1∏
k=1

QR
k (ρk),

and the QR
k (ρk) are determined by the Baxter equations (k = 1, . . . , n − 1):

t (ρ)(νk|E)QR
k (ρk) = �+

k (νk)Q
R
k (ρk + 1) + �−

k (ωνk)Q
R
k (ρk − 1). (7)

The corresponding Baxter equations for the left periodic eigenvector read

t (ρ)(νk|E)QL
k (ρk) = ωn−1�−

k (νk)Q
L
k (ρk + 1) + ω1−n�+

k (ωνk)Q
L
k (ρk − 1). (8)

The functions �±
k are defined by

�+
k (λ) = (ωρ/χk)(λ/ω)1−n

n−1∏
m=1

Fm(λ/ω), �−
k (λ) = χk(λ/ω)n−1Fn(λ/ω), (9)

Fm(λ) = (bm + ωam�mλ) (λcm + dm/�m) . (10)

We shall not need the expression for χk , see (43) of [2], since this will cancel in our final
formulae. The existence of a non-trivial solution to (7), (8) is provided by a set of functional
equations, which determines the still unknown values E.

In [2] we calculated the action of un, the Weyl operator at site n, on an eigenvector |�ρ〉
of B(λ) to have the form

un|�ρ〉 = g|�ρ〉 +
n−1∑
k=0

gk|�ρ+k 〉 with ρ+k = (ρ0, . . . , ρk + 1, . . . , ρn−1), (11)

and g and gk are certain functions depending on the parameters aj , bj , cj , dj , �j and the
components of ρ. Since in [1, 2] we also found a factorized expression for the norm 〈�ρ|�ρ′ 〉,
we have the framework for calculating normalized matrix elements 〈�ρ|un|�ρ′ 〉/〈�0|�0〉,
where 0 = (0, 0, . . . , 0). For calculating matrix elements between periodic states 〈�ρ |un|�ρ ′ 〉,
in addition we also need the solutions Q

L,R(ρ)

k (ρk) of the Baxter equations (7) and (8) (recall
that above we suppressed the charge index ρ). These are available for N = 2, and our main
goal is to obtain such periodic matrix elements in a factorized form. We achieve this by
explicitly performing the sums over the intermediate Z2-variables. For N � 3 the matrix
element formula generalizing (58) of [2] can be written with no difficulties. However, since
for N � 3 we have no explicit solutions to the Baxter equations, at present in this case we see
no way to perform sums over intermediate variables.

This paper is organized as follows: in section 2 we recall the N = 2 spin matrix element
calculated in [2] and transform it into a much more compact form by performing the summation
over an intermediate variable, still keeping the model general and inhomogeneous. In order to
proceed beyond this result, in section 3 we specialize the parameters of the BBS model such
that we get the homogenous Ising model. We discuss the structure of the eigenvalues and the
solutions to the Baxter equations. The vanishing of some transfer matrix eigenvalues at the

3
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zeros of B(λ) requires us to distinguish four cases when solving the Baxter equations. Then in
section 4 we continue the evaluation of the matrix elements of the spin operator, until we are
finally able to perform the multiple sum over intermediate spins. The derivation of the basic
formula for the multiple spin summation is delegated to the appendix. Section 5 deals with the
calculation of squares of the matrix elements. In section 6 we include a special case excluded
in the earlier sections and give the final formulae for the matrix element of spin operators in
terms of the zeros of the transfer matrix and excited quasi-momenta. Then we are ready to
compare our result in section 7 to a conjectured formula of Bugrij and Lisovyy [3, 4]. In
section 8, we apply the formulae of section 6 to obtain the matrix element of σ z for the finite
quantum Ising chain in a transverse magnetic field. In section 9 we give our conclusions.

2. Spin operator matrix element for the N = 2 inhomogenous BBS model

In [2], we derived a formula for the normalized matrix element of the spin operator between
arbitrary states of the periodic inhomogenous N = 2 BBS model. For N = 2 there are
two Z2-charge sectors ρ = 0, 1 in (6). Since un is anticommuting with the charge operator
V = v1v2 · · · vn, its only non-vanishing matrix elements are between periodic states |�ρ〉 with
different charge ρ. Let QL(ρ) and QR(ρ) be solutions to the Baxter equations (7), (8) and rk the
zeros of the operator polynomial B(λ), see (4). Then our result in (58) of [2] can be written:

〈�0|un|�1〉
〈�̃0,0|�̃0,0〉

=
∑
ρ′

N (ρ′)

(
R0(ρ

′)
(

an

r̃
(−1)ρ̃

′ − �1�2 · · · �n−1bn

r0

)
+

n−1∑
k=1

Rk(ρ
′)

)
, (12)

N (ρ′) = (−1)nρ̃ ′
n−1∏
l<m

rl + rm

(−1)ρl rl + (−1)ρmrm

, R0(ρ
′) =

n−1∏
l=1

Q
L(0)
l (ρl)Q

R(1)
l (ρl), (13)

Rk(ρ
′) = −anbncn

r0
Q

L(0)
k (ρk + 1)Q

R(1)
k (ρk)

n−1∏
l �=k

Q
L(0)
l (ρl)Q

R(1)
l (ρl)

×
(

1 − dn

�ncnνk

)
νn−1

k χk∏
s �=k(νk − νs)

, (14)

with νk = −rk(−1)ρk , r̃ = r0r1 · · · rn−1 and ρ̃ ′ = ∑n−1
k=1 ρk . The different terms in (12)

have the following origin: N (ρ′) is a normalization factor due to the convenient (since it
avoids further factors) choice of normalizing by 〈�̃0,0|�̃0,0〉 of the auxiliary system. Here
|�̃ρ,ρ′

n
〉 = |�0,ρ′

n
〉 + (−1)ρ |�1,ρ′

n
〉, where |�ρ0,ρ′

n
〉 is an eigenvector defined in (4), see also

(35) in [2]. For the terms in (12) recall (11). The terms at R0(ρ
′) correspond to g and g0 in

(11). The sum over k and the expression for Rk(ρ
′) arise from the shift in the index ρk and the

coefficients gk .
In the remaining part of this section we now show that the sum over k can be performed,

leading to the much simpler expression (21) and (22).
We start rewriting the factors of the Rk(ρ

′):

−anbncn

r0
νn−1

k χk

(
1 − dn

�ncnνk

)
= (−1)n−1bn

r0�nνk(νk + ζn)
�

(0)
k

−
(νk)

= (−1)n−1bn

r0�nνk(νk + ζn)

{
1
2

(
�

(0)+
k (−νk) + �

(0)−
k (νk)

)
+ 1

2

(
�

(1)+
k (−νk) + �

(1)−
k (νk)

)}
4
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= (−1)n−1bn

2r0�nνk(νk + ζn)

(
(−1)n−1t (0)(νk)Q

L(0)
k (ρk)

Q
L(0)
k (ρk + 1)

+
t (1)(−νk)Q

R(1)
k (ρk + 1)

Q
R(1)
k (ρk)

)
,

(15)

where we define ζk = bk/(ak�k) and use �
(ρ)±
k (λ) from (9), pointing out the explicit

dependence on ρ. For obtaining the first two lines of (15) we used

�
(0)−
k (νk) = �

(1)−
k (νk) = χk(−νk)

n−1(bn + an�nνk)(−νkcn + dn/�n),

and �
(0)+
k (−νk) = −�

(1)+
k (−νk). To get the third line of (15) we used the Baxter

equations (7), (8), where for N = 2 we have ω = −1 and ρk + 1 = ρk − 1 mod Z2:

Q
L(0)
k (ρk)

Q
L(0)
k (ρk + 1)

= �
(0)+
k (−νk) + �

(0)−
k (νk)

(−1)n−1t (0)(νk)
,

Q
R(1)
k (ρk + 1)

Q
R(1)
k (ρk)

= �
(1)+
k (−νk) + �

(1)−
k (νk)

t (1)(−νk)
.

Then, using (15), (14) becomes

Rk(ρ
′) = bn

2r0�n

1

νk(νk + ζn)
∏

s �=k(νk − νs)

⎛⎝t (0)(νk)R0(ρ
′) + (−1)n−1t (1)(−νk)

×Q
L(0)
k (ρk + 1)Q

R(1)
k (ρk + 1)

n−1∏
l �=k

Q
L(0)
l (ρl)Q

R(1)
l (ρl)

⎞⎠ . (16)

Now the sum over k in (12) can be performed using an identity (cf the appendix of [2]), valid
for any polynomial f (x) of degree less than n + 1 and for any n + 1 non-coincident points xk:
consider a polynomial f (x) = fnx

n + · · ·+f0, its interpolation through the points x1, . . . , xn+1,
and focussing attention on the coefficient of xn:

f (x) =
n+1∑
k=1

f (xk)

n+1∏
s �=k

x − xs

xk − xs

, fn =
n+1∑
k=1

f (xk)∏n+1
s �=k(xk − xs)

. (17)

For calculating the sum over k of the first term in the parentheses of (16), in (17) we take
f (x) = t (0)(x) and (x1, . . . , xn−1, xn, xn+1) = (ν1, . . . , νn−1, 0,−ζn). Thus we get

n−1∑
k=1

t (0)(νk)

νk(νk + ζn)
∏

s �=k(νk − νs)
= E(0)

n − t (0)(0)

ζn

∏n−1
s=1 (−νs)

− t (0)(−ζn)

−ζn

∏n−1
s=1 (−ζn − νs)

, (18)

where E(0)
n is the leading coefficient of t (0)(λ).

For the second term of the last line of (16) we will not perform the summation over k
directly. Instead, for each ρ′ for which we make the summation of the first term, we take for
the summation over k the second term of (16) corresponding to ρ′+k (which entails νk → −νk)
in (12). Collecting all such terms and taking into account the changes which come from
N (ρ′+k

)/N (ρ′) we perform the summation over k. Together with (18), we get

5
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bn

2r0�n

R0(ρ
′)

(
E(0)

n − t (0)(0)

ζn

∏n−1
s=1 (−νs)

+
t (0)(−ζn)

ζn

∏n−1
s=1 (−ζn − νs)

− E(1)
n − t (1)(0)

ζn

∏n−1
s=1 (−νs)

+
t (1)(ζn)

ζn

∏n−1
s=1 (ζn − νs)

)
. (19)

The leading and the constant coefficients of t (ρ)(λ) can be read off directly from (1), (2):

E(ρ)
n =

n∏
l=1

alcl + (−1)ρ
n∏

l=1

�l, E
(ρ)

0 = t (ρ)(0) = 1 + (−1)ρ
n∏

l=1

(bldl/�l). (20)

Inserting these results into (12) we find that the E
(ρ)
n and E

(ρ)

0 terms in (19) just cancel
the terms of the bracket at R0(ρ

′) in (12), and we get simply

〈�0|un|�1〉
〈�̃0,0|�̃0,0〉

= an

2r0

∑
ρ′∈Z

n−1
2

N (ρ′)R0(ρ
′)R(ρ′) (21)

with

R(ρ′) = t (0)(−ζn)∏n−1
l=1 (−ζn + (−1)ρl rl)

+
t (1)(ζn)∏n−1

l=1 (ζn + (−1)ρl rl)
. (22)

We shall write R(ρ′) = R(0)(ρ′) + R(1)(ρ′) when we have to refer to the separate terms on the
right-hand side of (22). Despite the simple appearance, for the general inhomogenous N = 2
BBS model, performing the multiple sums over the Z2 variables seems to be a presently
impossible task. However, restricting ourselves to the homogenous model with the parameters
satisfying

aj = cj = a, bj = dj = b, �j = 1 for j = 1, . . . , n − 1. (23)

we are able to evaluate (21) with (13), (22) completely, as will be shown in section 4.

3. Homogeneous Ising model

In all the following sections we consider only the N = 2 case of the model defined by (1) with
(23). For a fixed chain length n, we are left with only the two parameters a, b and the spectral
parameter λ. For N = 2 we have ω = −1 and represent the Weyl operators uk, vk by Pauli
matrices acting at the kth site. So, now our model is defined by

Lk(λ) =
(

1 + λσx
k λσ z

k

(
a − bσx

k

)
σ z

k

(
a − bσx

k

)
λa2 + σx

k b2

)
. (24)

Fixing the spectral parameter to the value λ = b/a, the L-operator (24) degenerates

Lk(b/a) = (
1 + σx

k b
/
a
) ( 1

aσ z
k

) (
1, bσ z

k

)
and the transfer matrix can be put into the standard Ising form

t(b/a) = tr L1(b/a)L2(b/a) · · · Ln(b/a) =
n∏

k=1

(
1 + σx

k · b/a
) ·

n∏
k=1

(
1 + σ z

k−1σ
z
k · ab

)
∼ exp

(
n∑

k=1

K∗
x σ x

k

)
exp

(
n∑

k=1

Kxσ
z
k−1σ

z
k

)
, (25)

6
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if we use periodic boundary conditions σ z
n+k ≡ σ z

k and identify

e−2Ky = tanh K∗
x = b/a, tanh Kx = ab. (26)

So at λ = b/a we call the model (24) the Ising model. If we do not fix the spectral parameter
to this special value, we shall talk of the ‘generalized Ising model’. However, transfer matrix
eigenstates are independent of the choice of λ.

3.1. Structure of the eigenvalues

In [1] the eigenvalues of the transfer matrix t(λ) = tr L1(λ) · · · Ln(λ) with Lk(λ) given
by (1) for N = 2 and homogeneous parameters have been calculated from the functional
relations. From Z2-invariance t(λ) commutes with the Z2-charge operator V = σx

1 σx
2 · · · σx

n .

Since V2 = 1, the space of eigenstates of t(λ) decomposes into two sectors according to the
eigenvalues (−1)ρ (where ρ = 0, 1) of V. The sector ρ = 0 is called the NS-sector, ρ = 1
the R-sector. The 2n eigenvalues can be written as (we specialize assuming (23)):

t (ρ)(λ) = (a2n + (−1)ρ)
∏

q

(λ + (−1)σqsq), sq = s−q =
√

b4 − 2b2 cos q + 1

a4 − 2a2 cos q + 1
, (27)

where the quasi-momentum q in each sector takes n values q = 2π
n

m with m integer (half-
integer) for the R (NS)-sectors. If σq = 0 the quasi-momentum q is called unexcited, for
σq = 1 it is called excited. In the NS (R)-sector, the eigenstates of t(λ) have an even (odd)
number of excitations:

∏
q(−1)σq = (−1)ρ .

For q = 0 (this occurs only for the R-sector) and for q = π we define

s0 = b2 − 1

a2 − 1
, sπ = b2 + 1

a2 + 1
. (28)

The quasi-momentum q = π is in the R-sector for n even, it is in the NS-sector for n odd.
The different presence of factors (λ ± s0) and (λ ± sπ ) in (27) for n even or odd often makes
it necessary to consider the cases of even n and odd n separately.

We shall also use the notation

λq = (−1)σqsq. (29)

3.2. State vectors from Baxter equations

In order to obtain the eigenvectors of the transfer matrix t(λ), we have to solve Baxter’s
equations (7) and (8). As input we use the corresponding eigenvalues t (ρ)(λ) which are
specified by the values σq for all q in the sector ρ, see (27). Solving Baxter’s equations,
we should use the values t (ρ)(±rk) of these polynomials at the values ±rk of the roots of
the eigenvalue polynomials of the operator Bn(λ) (which is the off-diagonal element of the
monodromy matrix) given by formula (A7) of [1]. For our special parameters (23) and N = 2
the rk are simply related to the sq:

rk = sqk
, qk = πk/n, k = 1, . . . , n − 1. (30)

This means that for our special choice of parameters (23), the zeros of t (ρ)(λ) may coincide
with rk , giving rise to the vanishing of the left-hand sides of (7) and (8). At the parameters
(23) all Fm are equal: Fm(λ) = F(λ) and from (10) we obtain

F(λ) = b2 − a2λ2, χ2
k r

2(n−1)
k = (−1)n+k+1Fn−2(rk). (31)

7
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Let us compare two sets: the set {qk} which parameterizes the roots rk , and the set of all
possible quasi-momenta {q}. The latter set is divided into two sub-sets: the NS and the R-
sectors. The NS-sector contains pairs of quasi-momenta {qk,−qk} for odd k and the R-sector
includes the pairs {qk,−qk} for even k. The quasi-momentum q = 0 always belongs to the
R-sector, and q = π belongs to the R-sector for even n and to the NS-sector for odd n.

The solutions of Baxter’s equations for the case of the Ising model were found in [2]. Here
we recall the final result. For a fixed sector ρ and the eigenvalue polynomial t (ρ)(λ) we have to
solve n−1 systems of Baxter’s equation (7) (or (8)) numerated by the integers k = 1, . . . , n−1.
With respect to these data we have to distinguish four cases. For (−1)ρ = (−1)k:

(i) t (ρ)(rk) �= 0 and t (ρ)(−rk) �= 0:

Q
L,R
k (0) = 1, Q

L,R
k (1) = (−1)n−1t (ρ)(−rk)

2χkr
n−1
k F (rk)

.

The other three cases occur for (−1)ρ = (−1)k−1 :
(ii) t (ρ)(rk) �= 0, t (ρ)(−rk) = 0: t (ρ)(λ) contains a factor (λ+ rk)

2 (both q = ±qk not excited),
we may normalize

Q
L,R
k (0) = 1, Q

L,R
k (1) = 0.

(iii) t (ρ)(rk) = 0, t (ρ)(−rk) �= 0: t (ρ)(λ) contains a factor (λ−rk)
2 (both q = ±qk are excited),

we cannot choose Q
L,R
k (0) = 1, but we may normalize

Q
L,R
k (0) = 0, Q

L,R
k (1) = 1.

(iv) t (ρ)(rk) = t (ρ)(−rk) = 0: t (ρ)(λ) contains
(
λ2 − r2

k

)
(either q = +qk or q = −qk

is excited): a L’Hôpital procedure as described in [2] is required (in order to obtain
eigenvectors of the translation operator) leading to

QR
k (0) = QL

k (0) = 1, QR
k (1) = −QL

k (1) = (−1)n+σqk
+12i sin qkt

(ρ)

q̌k
(−rk)

nχkr
n−1
k A(qk)

,

where

t (ρ)(λ)= t
(ρ)

q̌k
(λ)

(
λ + (−1)σqk sqk

)(
λ − (−1)σqk s−qk

)
, A(q)= a4 − 2a2 cos q + 1. (32)

In the following sections we shall restrict ourselves to calculate only transitions
between eigenvectors allowing the normalization Q

L,R
k (0) = 1, postponing to section 6 the

consideration of eigenvectors for which t (ρ)(λ) contains factors (λ− rk)
2, i.e. the eigenvectors

involving case (iii) above.
As already observed at the beginning of section 2, the non-vanishing spin matrix elements

have left and right eigenstates from different sectors. Let t (0) and t (1) be the corresponding
eigenvalue polynomials. With respect to these two polynomials we define the sets D̆(ρ), D̂(ρ),
D(ρ):

k ∈ D̆(ρ) if t (ρ) has a factor (λ + rk)
2, i.e. we have case (ii),

k ∈ D̂(ρ) if t (ρ) has a factor (λ − rk)
2, case (iii),

k ∈ D(ρ) if t (ρ) has a factor
(
λ2 − r2

k

)
, i.e. we have case (iv).

By D = |D| we denote the number of elements in D = D(0) ∪ D(1), similarly for D̆, etc.

8
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4. Calculation of the matrix element of σz
n in the homogeneous Ising model

We now start to evaluate (21) with (13) and (22) in our simplified model where

ζ = b/a, r2
0 = (a2 − b2)(a4n − 1)/(a4 − 1). (33)

We have to observe that in the derivation of (12) given in [2], generic BBS parameters leading
to t (ρ)(rk) �= 0 were assumed, and the solutions to the Baxter equation were normalized to
Q

L,R
k (0) = 1. As we have seen in section 3.2, in the case (iii) this normalization is not possible

for the special parameters (23). In order not to complicate the derivation, in the following part
of this section we shall simply exclude state vectors containing k ∈ D̂, adding the changes
necessary for k ∈ D̂ in section 6. Also in this section we shall omit the superscripts L and R in
the notations of Q

L,R(ρ)

k (ρk) supposing that the left/right eigenvectors are from NS/R-sectors
as they appear in (21).

Consider R0(ρ
′). Always one of the factors in Q

(0)
l (ρl)Q

(1)
l (ρl) is from case (i) above,

and excluding l ∈ D̂, the other is from either (ii) or (iv). So always Q
(0)
l (0)Q

(1)
l (0) = 1. For

l ∈ D̆ we have Q
(0)
l (1)Q

(1)
l (1) = 0 since either Q

(0)
l (1) = 0 or Q

(1)
l (1) = 0 depending on the

parity of l. So, in (21) the summation reduces to the summation over ρl for l ∈ D, with ρl = 0
fixed for l ∈ D̆.

4.1. Calculation of R(ρ′)

Let us show that a common factor can be extracted from the two terms of (22). We first
consider the case of odd n where q = 0 appears in the R-sector and q = π in the NS-sector.

We start with the first term R(0)(ρ′) in (22). Now from (27) the NS eigenvalue polynomial
t (0)(λ) for odd n is

NS, n odd: t (0)(λ) = (a2n + 1)
(
λ + (−1)σπ sπ

) ∏
k∈D̆(0)

(λ + rk)
2
∏

l∈D(0)

(
λ2 − r2

l

)
(34)

(for even n omit the bracket with sπ ) since in the NS-sector only odd k appear, and these fall
into one of the classes (ii) and (iv), class (iii) being momentarily excluded. We insert t (0)(−ζ )

from (34) and decompose the denominator product over l in its even-l and odd-l parts. We
write the odd part as l ∈ D(0) ∪ D̆(0) since for ρ = 0 in cases (ii) and (iv) l must be odd (recall,
we still exclude case (iii)):

R(0)(ρ′) = (a2n + 1)

(−ζ + (−1)σπ sπ

)∏
l even

(−ζ + (−1)ρl rl

) ∏
k∈D̆(0) (−ζ + rk)

2 ∏
l∈D(0)

(
ζ 2 − r2

l

)∏
k∈D̆(0) (−ζ + rk)

∏
l∈D(0)

(−ζ + (−1)ρl rl

)
×

∏
m∈D̆(1) (ζ + rm)

∏
m∈D(1)

(
ζ + (−1)ρmrm

)∏
m even

(
ζ + (−1)ρmrm

) . (35)

In the last line we put a factor unity, written as quotient of upstairs a product over m ∈ D(1)∪D̆(1)

and downstairs over m even. In the D̆ terms we omitted the factor (−1)ρk since from (ii) this
contributes only if ρk = 0. Now several cancellations take place, resulting in

R(0)(ρ′) = (a2n + 1)
(−ζ + (−1)σπ sπ

)
(−1)|D(0)| ∏

l even

(−ζ 2 + r2
l

) ∏
k∈D̆

((−1)kζ + rk)
∏
l∈D

(ζ + (−1)ρl rl). (36)

Observe that now the ρ′-dependence appears only in the last product over D. This happens
because all l-odd terms cancel and because D̆(0) allows only ρl = 0. In the denominator we

9
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use ζ = b/a, (27), (30) and
∏

l even A(ql) = (a2n − 1)/(a2 − 1) to obtain∏
l even

(−ζ 2 + r2
l

) = ((ζ 2 − 1)(a2b2 − 1))(n−1)/2(a2 − 1)/(a2n − 1). (37)

The second term in (22) can be evaluated analogously. We insert t (1)(ζ ) from

R, n odd: t (1)(λ) = (a2n − 1)
(
λ + (−1)σ0s0

) ∏
k∈D̆(1)

(λ + rk)
2
∏

l∈D(1)

(
λ2 − r2

l

)
(38)

and use
∏

l odd A(ql) = (a2n + 1)/(a2 + 1) to get finally for n odd:

R(n odd)(ρ′) =
(

(−1)σπ (a2 + 1)
( − ζ + (−1)σπ sπ

)∏
l∈D

((−1)ρl rl + ζ )

− (−1)σ0(a2 − 1)
(
ζ + (−1)σ0s0

)∏
l∈D

((−1)ρl rl − ζ )

)
R (39)

with (using also (33))

R = r2
0 α−1(αβ)−(n−1)/2an−1

∏
k∈D̆

((−1)kζ + rk), (40)

where α = a2 − b2,β = 1 − a2b2, and (−1)|D
(0)| = (−1)σπ , (−1)|D

(1)| = −(−1)σ0 in the case
of odd n.

The case of n even is less symmetric between R(0) and R(1) since now both q = 0 and
q = π are in the R-sector, none of them in NS. So the term containing sπ appears in t (1)(ζ )

instead of t (0)(−ζ ). Also, (−1)|D
(0)| = 1, (−1)|D

(1)| = −(−1)σ0+σπ in the case of even n. In
the following products, for l odd there are n/2 values and for l even we have n/2 − 1 values:

R(n even)(ρ′) =
(∏

l∈D
((−1)ρl rl + ζ ) − (−1)σ0+σπ

∏
l∈D

((−1)ρl rl − ζ )

× (a4 − 1)
(
ζ + (−1)σ0s0

)(
ζ + (−1)σπ sπ

)
a2/(αβ)

)
R, (41)

R = r2
0 α−1(αβ)1−n/2an−2

∏
k∈D̆

((−1)kζ + rk). (42)

4.2. Calculation of N (ρ) · R0(ρ
′)

In this subsection we shall show that the product N (ρ) ·R0(ρ
′) can be put into the very simple

form (50). Let us start evaluating R0(ρ
′).

At the beginning of this section we already discussed that, if we exclude case (iii), l �= D̂,
then Q

(0)
l (0)Q

(1)
l (0) = 1, and from (ii) if l ∈ D̆ we have Q

(0)
l (1)Q

(1)
l (1) = 0. So we have to

consider only l ∈ D for which we get from (i) and (iv) (momentarily we suppose that l is odd,
but the result (46) is the same for even l):

Q
(0)
l (1)Q

(1)
l (1) = −(−1)σql

+l
(−1)n2i sin qlt

(0)
q̌l

(−rl)

nχlr
n−1
l A(ql)

· (−1)n−1t (1)(−rl)

2χlr
n−1
l F (rl)

= (−1)σql
+n+1 i sin ql

nA(ql)F n−1(rl)
t
(0)
q̌l

(−rl)t
(1)(−rl), (43)

10
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where in the last step we used (31). The polynomial t
(0)
q̌l

(λ) is t (0)(λ) given by (34) with the
factor λ2 − r2

l omitted, see (32). In the first line the factor −(−1)σql
+l takes care whether ql

or −ql is excited, the minus sign comes because Q
(0)
l is a left eigenvector component. Now

since we should not use l ∈ D̆ (if present, such a term leads to a vanishing contribution in
(21)), we have

t
(0)
q̌l

(−rl)t
(1)(−rl) = a4n − 1

a4 − 1
Sl

∏
m∈D,m�=l

(
r2
l − r2

m

)
= a4n − 1

a4 − 1
Sl

n−1∏
k=1,k �=l

(
r2
l − r2

k

)∏
k∈D̆

(
−−rl + rk

rl + rk

)
(44)

with Sl := (a4 − 1)
(−rl + (−1)σπ sπ

)(−rl + (−1)σ0s0
)
. Inserting (44) into (43) and using,

recall (32),

r2
l − r2

k = 2(cos qk − cos ql)F (rl)/A(qk),

n−1∏
k=1

A(qk) = a4n − 1

a4 − 1
= r2

0

a2 − b2
, (45)

and the trigonometric identity

2n−1 sin2 ql

∏
k �=l

(cos ql − cos qk) = n(−1)l+1

we obtain

Q
(0)
l (1)Q

(1)
l (1) = (−1)σql

+l+|D̆|+1 Sl

2i sin qlF (rl)

∏
k∈D̆

(−rl + rk

rl + rk

)
, (46)

valid both for ql in R and for ql in NS.
Let us rewrite the ratio Sl/(2i sin qlF (rl)) in a convenient way. By the straightforward

use of definitions (28), (31) and (30) we find

∓ Sl

2i sin qlF (rl)
= −rl + (−1)σ0α±ql

rl + (−1)σ0α±ql

, αq = b2 − eiq

a2 − eiq
for (−1)σ0 = +(−1)σπ ,

∓ Sl

2i sin qlF (rl)
= −rl + (−1)σ0β±ql

rl + (−1)σ0β±ql

, βq = b2eiq − 1

a2 − eiq
for (−1)σ0 = −(−1)σπ ,

(47)

leading to (written such that it is valid for both ρl = 0 and ρl = 1):

Q
(0)
l (ρl)Q

(1)
l (ρl) = (−1)(n−1)ρl

(−1)ρl rl + ξl

rl + ξl

·
∏
k∈D̆

(−1)ρl rl + rk

rl + rk

, (48)

where

ξl =
{

α̃l = (−1)σ0αq̃l

β̃l = (−1)σ0βq̃l

for (−1)σ0 = ±(−1)σπ ; q̃l = (−1)σql
+|D|+lql . (49)

Multiplying by N (ρ′), it is easy to see that the products over k ∈ D̆ in (48) cancel (recall
that ρk = 0 for k ∈ D̆) and we get finally

N (ρ) · R0(ρ
′) =

∏
l∈D

(−1)ρl
(−1)ρl rl + ξl

rl + ξl

∏
m∈D,m>l

rl + rm

(−1)ρl rl + (−1)ρmrm

. (50)

11



J. Phys. A: Math. Theor. 41 (2008) 095003 G von Gehlen et al

4.3. Summation over ρ′ in (21)

In (39), (41) and (50) we have obtained all factors for the calculation of the normalized matrix
element in such a form that the dependence on the summation indices ρ′ is explicit

〈�0|σ z
n |�1〉

〈�̃0|�̃0〉
=

∑
ρ′∈Z

n−1
2

(
Rν

+

∏
l∈D

((−1)ρl rl + ζ ) + Rν
−
∏
l∈D

((−1)ρl rl − ζ )

)

×
∏
l∈D

(−1)ρl
(−1)ρl rl + ξl

rl + ξl

∏
m∈D,m>l

rl + rm

(−1)ρl rl + (−1)ρmrm

, (51)

where the ρ′-independent factors Rν
± can be read off from (39), (40) and (41), (42). The

superscript ν stands for n odd and even, respectively.
Collecting all factors which depend on ρl, l ∈ D, the problem of performing the multiple

summation over ρl, l ∈ D, reduces to calculating the following sum (proved in the appendix):

YD =
∑

ρl ,l∈D

∏
l∈D(−1)ρl ((−1)ρl rl + ξl)((−1)ρl rl + ζ )∏

l<m,l,m∈D((−1)ρl rl + (−1)ρmrm)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
cα(b ± a)

(∏
j∈D eiq̃j ∓ ab

)∏
l∈D(2rl/a)f

(D−1)/2
l g

(D−3)/2
l∏

l,m∈D,l<m(±hl,m)
, ξl = ±αq̃l

, D odd

cβ(1 ∓ ab)
( ± ab

∏
j∈D eiq̃j + 1

)∏
l∈D(2rl/a)(flgl)

D/2−1∏
l,m∈D,l<m(±hl,m)

, ξl = ±βq̃l
, D even

(52)

with D = |D|,
cα = α−(D−1)(D−3)/4(−β)−(D−1)2/4, cβ = (−α)−(D−2)D/4β−(D−2)2/4, (53)

and we abbreviate

fl = a2eiq̃l − 1, gl = eiq̃l − a2, hl,m = eiq̃l+iq̃m − 1,

α = a2 − b2, β = 1 − a2b2.
(54)

In the calculation of the matrix element (21), we restrict ourselves to the case σ0 = σπ

corresponding to D odd. The case σ0 �= σπ corresponding to D even can be done similarly.
Also the two cases of even and odd parity of n have to be considered separately. For odd n,
taking into account (39), (52) and using (28) with

(−1)σ0a(a2 + 1)
( − ζ + (−1)σ0sπ

)
((−1)σ0a + b)

(∏
l∈D

eiq̃l − (−1)σ0ab

)

− (−1)σ0a(a2 − 1)
(
ζ + (−1)σ0s0

)
((−1)σ0a − b)

(∏
l∈D

eiq̃l + (−1)σ0ab

)
= 2(−1)σ0α(1 − (−1)σ0ab)

∏
l∈D

eiq̃l , (55)

we have finally

〈�0|σ z
n |�1〉

〈�̃0,0|�̃0,0〉
= r0c̃ncα

∏
k∈D̆

((−1)kb + ark)

∏
l∈D 2rl eiq̃l f

(D−1)/2
l g

(D−3)/2
l∏

l<m,l,m∈D(−1)σ0hl,m

∏
l<m,l,m∈D(rl + rm)∏
l∈D(rl+ (−1)σ0αq̃l

)
,

(56)
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where

c̃n = ((−1)σ0 − ab)(αβ)(1−n)/2.

Analogously, in the case of even n and σ0 = σπ , using (39) we get the same formula (56)
for the matrix elements but with

c̃n = (b + (−1)σ0a)α−1(αβ)(2−n)/2.

5. Product of matrix elements

In this section we sketch the calculation of the conjugate matrix elements 〈�1|σ z
n |�0〉, where

the vectors 〈�1| and |�0〉 shall have the same eigenvalues as the vectors |�1〉 and 〈�0| used
in the previous sections. This calculation can be performed in the same way as we did in
section 4. In analogy to (21), (22) we get for the homogeneous case

〈�0|σ z
n |�1〉

〈�̃0,0|�̃0,0〉
= a

2r0

∑
ρ′

N (ρ′)R∗
0(ρ

′)R∗(ρ′)

with

R∗(ρ′) = t (1)(−ζ )∏n−1
l=1 (−ζ + (−1)ρl rl)

+
t (0)(ζ )∏n−1

l=1 (ζ + (−1)ρl rl)
.

Now we have to make the same transformations as we made for R(ρ′) in section 4.1. The
expression for R∗(ρ′) is obtained from R(ρ′) given by (22) just by substituting b → −b (in
particular, ζ → −ζ ). Let us compare R∗

0(ρ
′) and R0(ρ

′). From the solution of the Baxter
equations it follows that

Q
L(1)
l (ρl)Q

R(0)
l (ρl) = Q

L(0)
l (ρl)Q

R(1)
l (ρl) unless l ∈ D and ρl = 1.

Q
L(1)
l (1)Q

R(0)
l (1) = −Q

L(0)
l (1)Q

R(1)
l (1) if l ∈ D.

So, in the final formula we have to substitute q̃l → −q̃l .
Using these rules, in the case of σ0 = σπ , from (56) we get

〈�1|σ z
n |�0〉

〈�̃0,0|�̃0,0〉
= r0c̃ncα

∏
k∈D̆

(−(−1)kb + ark)

×
∏

l∈D 2rl e−iq̃l (f ∗
l )(D−1)/2(g∗

l )
(D−3)/2∏

l<m,l,m∈D(−1)σ0h∗
l,m

∏
l<m,l,m∈D(rl + rm)∏

l∈D(rl + (−1)σ0α−q̃l
)
, (57)

where h∗
l,m, f ∗

l , g∗
l are hl,m, fl, gl from (54) with the replacement q̃l → −q̃l .

In the product of (56) with (57) nice simplifications appear. We use∏
k∈D̆

((−1)kb + ark)(−(−1)kb + ark) =
∏
k∈D̆

αβ

A(q̃l)
, (58)

and fl · f ∗
l = gl · g∗

l = A(q̃l), so that

〈�0|σ z
n |�1〉

〈�̃0,0|�̃0,0〉
〈�1|σ z

n |�0〉
〈�̃0,0|�̃0,0〉

= c̃nc̃
∗
nr

2
0 (cα)2

∏
k∈D̆

αβ

A(q̃k)

×
∏
l∈D

⎛⎜⎝ 4r2
l A(q̃l)

D−2

(rl + (−1)σ0αq̃l
)(rl + (−1)σ0α−q̃l

)

∏
m>l

m∈D

(rl + rm)2

|hl,m|2

⎞⎟⎠ , (59)
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where c̃∗
n is c̃n with b → −b and c̃nc̃

∗
n = α1−nβ2−n is independent of parity of n. Using

further (45) and the short notations: λ0 = (−1)σ0s0, λπ = (−1)σπ sπ with σ0 = σπ

|hl,m|2 = 2(cos q̃m − cos q̃l)
sin 1

2 (q̃l + q̃m)

sin 1
2 (q̃l − q̃m)

= r2
l − r2

m

−αβ
A(q̃m)A(q̃l)

sin 1
2 (q̃l + q̃m)

sin 1
2 (q̃l − q̃m)

,

λπ − λ0

λπ + λ0
= −α

β
, 2rl(rl + λ0)(rl + λπ) = (λ0 + λπ)

(
rl + (−1)σ0αq̃l

)(
rl + (−1)σ0α−q̃l

)
,

we find that in (59) the factors A(q̃l) combine to

∏
k∈D̆

1

A(q̃k)

∏
l∈D

(
A(q̃l)

D−2
∏

m>l,m∈D

1

A(q̃m)A(q̃l)

)
=

∏
l∈D̆∪D

1

A(q̃l)
= α

r2
0

. (60)

Since also the factors α and β in (59) can be collected as follows (|D̆| + D = n − 1):

c̃nc̃
∗
n(cα)2(αβ)|D̆|(−αβ)D(D−1)/2α = (−α/β)(D−1)/2,

we get finally for arbitrary n and σ0 = σπ

〈�0|σ z
n |�1〉〈�1|σ z

n |�0〉
〈�̃0,0|�̃0,0〉2

= (
λ2

π − λ2
0

)(D−δ)/2
(λ0 + λπ)δ

∏
l∈D

2rl

(λ0 + rl)(λπ + rl)

×
∏

l<m,l,m∈D

rl + rm

rl − rm

· sin 1
2 (q̃l − q̃m)

sin 1
2 (q̃l + q̃m)

(61)

where δ = 1. In a similar way we can find the product of matrix elements in the case of
σ0 �= σπ . The final result is (61) with δ = 0. Observe that using (61), the explicit appearance
of excitations of type (ii), i.e. k ∈ D̆ has disappeared from our formula (recall that we still
exclude k ∈ D̂). We still have normalized our matrix elements by the norm taken from the
auxiliary system. In the following section we shall normalize to the norm of periodic states so
that the spin matrix element becomes independent of the special normalization of the periodic
states chosen. We shall also include the hitherto excluded case (iii).

6. Final formula for the square of the matrix element

The proper quantity to consider for the matrix element of the spin operator, which does not
depend on the normalization of the eigenvectors of the transfer matrix, is

〈�0|σ z
n |�1〉〈�1|σ z

n |�0〉/(〈�0|�0〉〈�1|�1〉). (62)

The factor

〈�0|�0〉〈�1|�1〉/〈�̃0,0|�̃0,0〉2 (63)

providing this change of normalization has been derived in formulae (74) and (75) of [2] for
odd and even n, respectively. To obtain (62) we just divide (61) by (63). The final result for
the square of the matrix element (61) as well as the formulae for the squares of norm (63)
were obtained for the eigenvectors with eigenvalues not containing factors (λ − sqk

)2, i.e. up
to now we have excluded the case (iii) in section 3.2.
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6.1. Excitations j ∈ D̂ producing factors (λ − sqj
)2 in t (ρ)(λ)

Now we explain how to modify these formulae for the matrix elements and norms if the
eigenvalue polynomials of states |�0〉 and |�1〉 contain factors (λ − sqj

)2 for some j , so that
t (ρ)(rj ) = 0 for ρ satisfying (−1)ρ = (−1)j−1. We denote the set of such j , corresponding
to both states |�0〉 and |�1〉, by D̂. As already mentioned in section 3.2, case (iii), we cannot
normalize the solution to the Baxter equation for the state |�ρ〉 by Q

L,R(ρ)

j (0) = 1. However,

we may normalize it by Q
L,R(ρ)

j (1) = 1. For the other state, the solution to the Baxter equation

is managed by the case (i) and there is no problem with the normalization Q
L,R(ρ)

j (0) = 1. We

shall use the normalization Q
L,R(ρ)

j (1) = 1 for all j ∈ D̂ irrespective of whether we have case
(i) or (iii).

In [2] the norm (56) and the matrix element (21) were calculated using the normalization
Q

L,R(ρ)

j (0) = 1 for all j = 1, 2, . . . , n − 1. These formulae were obtained for the case
of generic parameters for which any normalization is possible. Let us trace the changes in
these formulae if instead we choose the normalization Q

L,R(ρ)

j (1) = 1 for j from a subset
D̂ ⊂ {1, 2, . . . , n − 1}.

Compare the formulae for the matrix element (21) corresponding to a different
normalization of the solutions to the Baxter equation, i.e. we compare the term corresponding
to a set ρ′ in one formula with the term corresponding to the set ρ′+D̂ in the other formula (the
set ρ′+D̂ is obtained from the set ρ′ by shifts ρj → ρj + 1, j ∈ D̂). For N = 2 this just means
interchanging ρj = 0 and ρj = 1, while the other components remain unchanged. Also, we
change all rj → −rj , j ∈ D̂ in the second formula.

From the Baxter equations (7) and (8), the solution Q
L,R(ρ)

j (ρj + 1) normalized by

Q
L,R(ρ)

j (1) = 1 coincides with Q
L,R(ρ)

j (ρj )
∣∣
rj →−rj

with the normalization Q
L,R(ρ)

j (0) = 1.

The only factor which is changing in (21) is N (ρ′). The denominator is unchanged under
the simultaneous substitutions rj → −rj and ρj → ρj + 1. The change in the numerator is
corrected by the division of the matrix elements corresponding to solutions of Baxter equations
with Q

L,R(ρ)

k (1) = 1, not by 〈�̃0,0|�̃0,0〉 but by 〈�̃0,0+D̂ |�̃0,0+D̂ 〉. From the general expression
for the norm, (20) of [2] at N = 2, the change of normalization means multiplying our matrix
elements by

〈�̃0,0|�̃0,0〉
〈�̃0,0+D̂ |�̃0,0+D̂ 〉 =

∏n−1
l<m(rm + rl)∏n−1

l<m(rm(−1)ρm + rl(−1)ρl )
, (64)

where ρm = 1 if m ∈ D̂ and ρm = 0 otherwise. Finally, the factor (−1)nρ̃ ′
gives the sign

(−1)|D̂|n. The formula for the norms undergoes the same changes. Therefore formally the
expression (62) has to be invariant with respect to the substitutions rj → −rj . But the
final formula for (62) is given for the case of Ising model where we already replaced the
dependence on sqj

using the coincidence with rj . So the substitutions rj → −rj in this final
expression for (62) given in terms of λ0, λπ and rk, k = 1, 2, . . . , n − 1, will also change the
eigenvectors entering (62) to the eigenvectors corresponding to eigenvalue polynomials with
factors (λ − rj )

2, j ∈ D̂, instead of (λ + rj )
2. This is exactly what we need.

Summarizing: the final result (62) was obtained for eigenvectors with eigenvalues not
containing factors (λ − sqj

)2 and which could be given in terms of λ0, λπ and rk, k =
1, 2, . . . , n − 1. Now, if the eigenvalue polynomial contains the factors (λ − sqj

)2 instead
of (λ + sqj

)2 for some j , we just have to replace rj → −rj in the final formula for all
such j .
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6.2. Final result in terms of λ0, λπ , rk and q̃l

So the final formula for the matrix element becomes

〈�0|σ z
n |�1〉〈�1|σ z

n |�0〉
〈�0|�0〉〈�1|�1〉 = (

λ2
π − λ2

0

)(D−δ)/2
(λ0 + λπ)δ

∏
l<m

l,m∈D

(
rl + rm

rl − rm

· sin 1
2 (q̃l − q̃m)

sin 1
2 (q̃l + q̃m)

)

× �n

2D
∏

k∈D(+̇2rk)
·

∏
k odd,l even((−̇rk+̇rl)(+̇rk−̇rl))∏

k<l,k,l odd((+̇rk+̇rl)(−̇rk−̇rl))
∏

k<l,k,l even((+̇rk+̇rl)(−̇rk−̇rl))
, (65)

where

�n =
∏

k∈D(0) (λ0+̇rk)∏
k∈D(1) (λ0+̇rk)

∏
k∈D(1)

(
λ2

0 − r2
k

) ·
∏

k∈D(1) (λπ +̇rk)∏
k∈D(0) (λπ +̇rk)

∏
k∈D(0)

(
λ2

π − r2
k

) , for odd n,

�n =
∏

k∈D(0) (λ0+̇rk)(λπ +̇rk)

(λ0 + λπ)
∏

k∈D(1) (λ0+̇rk)(λπ +̇rk)
∏

k∈D(1)

(
λ2

0 − r2
k

)(
λ2

π − r2
k

) , for even n,

D = D̆ ∪ D̂,D(0) = D̆(0) ∪ D̂(0),D(1) = D̆(1) ∪ D̂(1) and ±̇rm is the short notation for rm if
m ∈ D̆, for ± rm if m ∈ D and for −rm if m ∈ D̂, respectively.

Recall the definitions of the various variables which appear in (65): the state vectors �0〉
and �1〉 are labelled by their excitation content. This is defined in (27)–(30), where also the
explicit form of the zeros rk of Bn(λ) is given. q̃l is just ql of (30) up to a sign, see (49). The
special role of the quasi-momenta zero and π gives rise to the appearance of λ0 and λπ , see
(28) and (29).

The right-hand side of the first line of (65) is just the right-hand side of (61) except
for the last product in the first line of (61). The second line of (65) mainly is the change
of normalization (63), given by (74) and (75) of [2]. However, it is slightly modified by a
cancellation against the last product of the first line in (61). Also, we have taken into account
the contributions of k ∈ D̂: these have the same form as those for k ∈ D̆, just with reflected
rk → −rk as discussed above.

We claim that these formulae prove the formula for the matrix element which was given
in [4] in an equivalent version. In order to show the equivalence, in the following we perform
some transformations of (65) to get a formula which is more appropriate for comparison.

6.3. Final result in terms of momenta

Let {q1, q2, . . . , qK} and {p1, p2, . . . , pL} be the sets of the momenta of the excitations
presenting the states |�0〉 from the NS-sector and |�1〉 from the R-sector, respectively. After
some lengthy but straightforward transformations of (65) we obtain

〈�0|σ z
n |�1〉〈�1|σ z

n |�0〉
〈�0|�0〉〈�1|�1〉 = J (sπ + s0)

(
s2
π − s2

0

)(K+L−1)/2
K∏

k=1

P NS
qk

∏ NS
2

q �=|qk | Nq,qk∏ R
2
p Np,qk

×
L∏

l=1

P R
pl

∏ R
2
p �=|pl | Np,pl∏ NS
2

q Nq,pl

·
∏K

k=1

∏L
l=1 Mqk ,pl∏K

k<k′ Mqk,qk′
∏L

l<l′ Mpl ,pl′
, (66)
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where NS/2 (R/2) is the subset of quasi-momenta from NS (R) taking values in the segment
0 < q < π , NS/2 (R/2) containing qk with odd k (even k):

Mα,β = sα + sβ

sα − sβ

· sin α+β

2

sin α−β

2

, Mα,−α = s2
α

(
s2

0 − s2
π

)(
s2
π − s2

α

)(
s2

0 − s2
α

) ,
Nα,β = sα + sβ

sα − sβ

, J =
∏ NS

2
q (s0 + sq)∏ R

2
p (s0 + sp)

·
∏ NS

2
q

∏ R
2
p (sq + sp)

2∏ NS
2

q,q′(sq + sq′)
∏ R

2
p,p′(sp + sp′)

.

For n odd:

P NS
q = sq

(sπ − sq)(s0 + sq)
, q �= π, P R

p = sp

(sπ + sp)(s0 − sp)
, p �= 0,

P R
0 = P NS

π = 1

sπ + s0
, J =

∏ R
2
p (sπ + sp)∏

q

NS
2 (sπ + sq)

J ,

for n even:

P NS
q = sq

(sπ + sq)(s0 + sq)
, P R

p = sp

(sπ − sp)(s0 − sp)
, p �= 0, π,

P R
0 = −P NS

π = 1

sπ − s0
, J =

∏ NS
2

p (sπ + sq)∏ R
2
q (sπ + sp)

J .

7. Bugrij–Lisovyy formula for matrix element

In [3, 4], the matrix elements of σ z
k between eigenvectors of symmetric Ising transfer matrix

tIsingSym = exp

(
1

2

n∑
k=1

Kxσ
z
k−1σ

z
k

)
exp

(
n∑

k=1

K∗
x σ x

k

)
exp

(
1

2

n∑
k=1

Kxσ
z
k−1σ

z
k

)
. (67)

were given. Since (25) and (67) are related by a similarity transformation with

exp

(
1

2

n∑
k=1

Kxσ
z
k−1σ

z
k

)
,

which commutes with σ z
m, it is natural to compare (66) with the square of the matrix element

as given in [4]:

|NS〈q1, q2, . . . , qK |σ z
m|p1, p2, . . . , pL〉R|2

= ξξT

K∏
k=1

∏NS
q �=qk

sinh γ (qk)+γ (q)

2

n
∏R

p sinh γ (qk)+γ (p)

2

L∏
l=1

∏R
p �=pl

sinh γ (pl )+γ (p)

2

n
∏NS

q sinh γ (pl )+γ (q)

2

·
(

ty − t−1
y

tx − t−1
x

)(K−L)2/2

×
K∏

k<k′

sin2 qk−qk′
2

sinh2 γ (qk)+γ (qk′ )
2

L∏
l<l′

sin2 pl−pl′
2

sinh2 γ (pl )+γ (pl′ )
2

∏
1�k�K

1�l�L

sinh2 γ (qk)+γ (pl )

2

sin2 qk−pl

2

. (68)

In this formula the states are labelled by the momenta of the excitations, and the squared matrix
element is given for σ z

m,m = 1, . . . , n. The operators σ z
m with different values of m are related

by similarity transformations with the translation operator. The states under consideration are
eigenvectors of the translation operator [15] with eigenvalues which have unit absolute value.
This explains why the formula presented does not depend on m. Therefore it is sufficient to
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calculate the matrix element for σ z
n . The factors in front of the right-hand side of (68) are

defined by

ξ = ((sinh 2Kx sinh 2Ky)
−2 − 1)1/4, ξT =

( ∏NS
q

∏R
p sinh2 γ (q)+γ (p)

2∏NS
q,q′ sinh γ (q)+γ (q′)

2

∏R
p,p′ sinh γ (p)+γ (p′)

2

)1/4

,

where γ (q) is the energy of the excitation with quasi-momentum q

cosh γ (q) =
(
tx + t−1

x

)(
ty + t−1

y

)
2
(
t−1
x − tx

) − ty − t−1
y

tx − t−1
x

cos q, (69)

where by (26) tx = tanh Kx = ab, ty = tanh Ky = (a − b)/(a + b).
The excitation with quasi-momentum q leads to the multiplication of the transfer matrix

eigenvalue by e−γ (q) in the notations of [4], and in our notation to the multiplication by
±(λ − sq)/(λ + sq) at λ = b/a. The sign is not fixed because the excitations arise by pairs.
Comparing (69) and (27) we get

eγ (q) = asq + b

asq − b
. (70)

Therefore

sinh 1
2 (γ (α) + γ (β)) = e

1
2 (γ (α)+γ (β)) ab(sα + sβ)

(b + asα)(b + asβ)
, (71)

which leads, in particular, to

sinh γ (α1)+γ (α2)

2 · sinh γ (α3)+γ (α4)

2

sinh γ (α1)+γ (α3)

2 · sinh γ (α2)+γ (α4)

2

=
(
sα1 + sα2

)(
sα3 + sα4

)(
sα1 + sα3

)(
sα2 + sα4

) . (72)

Our next problem is to rewrite (68) in terms of sq. We need

ξ

(
sinh2 γ (0)+γ (π)

2

sinh γ (0) sinh γ (π)

)1/4

= 1

(sinh 2Kx sinh 2Ky)1/2
,

ty − t−1
y

tx − t−1
x

= sinh 2Kx

sinh 2Ky

, sinh
γ (0) + γ (π)

2
= 1

sinh 2Ky

.

The following formulae give a correspondence between different parts of (68) and (66):

ξξT

sinh 1
2 (γ (0) + γ (π))

(
ty − t−1

y

tx − t−1
x

)1/2

= J,

∏NS
q �=qk

sinh γ (qk)+γ (q)

2

n
∏R

p sinh γ (qk)+γ (p)

2

= s0 + sπ

sinh γ (0)+γ (π)

2

P NS
qk

∏ NS
2

q �=|qk | Nq,qk∏ R
2
p Np,qk

,

∏R
p �=pl

sinh γ (pl )+γ (p)

2

n
∏NS

q sinh γ (pj )+γ (q)

2

= s0 + sπ

sinh γ (0)+γ (π)

2

P R
pl

∏ R
2
p �=|pl | Np,pl∏ NS
2

q Nq,pl

,

where in the last two formulae we used

sinh2 1
2 (γ (α) + γ (β)) = − ty − t−1

y

tx − t−1
x

· sα + sβ

sα − sβ

· sin 1
2 (α − β) · sin 1

2 (α + β), (73)

and, in particular,

sinh2 1
2 (γ (0) + γ (π)) = ty − t−1

y

tx − t−1
x

· s0 + sπ

s0 − sπ

, (74)
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together with (72) and some trigonometric identities. Formula (73) also gives

sinh2 γ (α)+γ (β)

2

sin2 α−β

2

= − ty − t−1
y

tx − t−1
x

Mα,β . (75)

Formula (75) is also valid for β = −α, but in this case we have to use formulae (70) and (71).
Finally, if we take into account (74) and that K in (66) is even, L is odd, then it is easy to see
that formulae (66) and (68) coincide.

8. Matrix elements for the quantum Ising chain in a transverse field

In this section we apply the formulae for the matrix elements obtained in section 6 to the
derivation of the matrix elements for the quantum Ising chain in a transverse field. Let us start
from the L-operator (24) with a = g−1/2 and b = 0:

Lk(λ) =
(

1 + λσx
k λg−1/2σ z

k

g−1/2σ z
k λg−1

)
. (76)

Expanding the transfer matrix for the monodromy matrix (2) with this L-operator we have:

tn(λ) = 1 − 2λ

g
Ĥ + · · · , Ĥ = −1

2

n∑
k=1

(
σ z

k σ z
k+1 + gσx

k

)
,

where Ĥ is the Hamiltonian of the periodic quantum Ising chain in a transverse field. From
(27) we get the spectrum of this Hamiltonian

E = −1

2

∑
q

±ε(q), (77)

where the energies of the quasi-particle excitations are

ε(q) = (1 − 2g cos q + g2)1/2 =
(
(g − 1)2 + 4g sin2 q

2

)1/2
, q �= 0, π,

ε(0) = g − 1, ε(π) = g + 1.

In (77), the sign +/− in front of ε(q) corresponds to the absence/presence of the excitation
with the momentum q. The NS-sector includes the states with an even number of excitations,
the R-sector includes the states with an odd number of excitations. The momentum q runs
over the same set as in (27). Then the formula for matrix elements for σ z

n is given by (66)
with sq = g/ε(q). After some simplification we get the analogue of (68) now for the quantum
Ising chain:

|NS〈q1, q2, . . . , qK |σ z
m|p1, p2, . . . , pL〉R|2 = g

(K−L)2

2 ξξT

K∏
k=1

eη(qk)

nε(qk)

L∏
l=1

e−η(pl )

nε(pl )

×
K∏

k<k′

(
2 sin qk−qk′

2

ε(qk) + ε(qk′)

)2 L∏
l<l′

(
2 sin pl−pl′

2

ε(pl ) + ε(pl′)

)2 K∏
k=1

L∏
l=1

(
ε(pl ) + ε(qk)

2 sin pl−qk

2

)2

,

(78)

where

ξ = (g2 − 1)
1
4 , ξT =

∏NS
q

∏R
p (ε(q) + ε(p))

1
2∏NS

q,q′(ε(q) + ε(q′))
1
4
∏R

p,p′(ε(p) + ε(p′))
1
4
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and

eη(q) =
∏NS

q′
(
ε(q) + ε(q′)

)∏R
p (ε(q) + ε(p))

.

Formally, all these formulae are correct for the paramagnetic phase where g > 1 and for the
ferromagnetic phase where 0 � g < 1. But for the case 0 � g < 1 it is natural to redefine the
energy of zero-momentum excitation as ε(0) = 1 − g to be positive. From (77), this change
of the sign of ε(0) in the ferromagnetic phase leads to a formal change between absence–
presence of zero-momentum excitation in the labelling of eigenstates. Therefore the number
of the excitations in each sector (NS and R) becomes even. Direct calculation shows that the
change of the sign of ε(0) in (78) can be absorbed to obtain formally the same formula (78)
but with new ε(0), even L (the number of the excitations in R-sector) and new ξ = (1−g2)1/4.

Formulae (68) and (78) allow us to reobtain already known formulae for the Ising model,
e.g. the spontaneous magnetization [16, 17]. Indeed, for the quantum Ising chain in the
ferromagnetic phase (0 � g < 1) and in the thermodynamic limit n → ∞ (when the energies
of |vac〉NS and |vac〉R coincide giving the degeneration of the ground state), we have ξT → 1
and therefore the spontaneous magnetization NS〈vac|σ z

m|vac〉R = ξ 1/2 = (1 − g2)1/8.

9. Conclusions

In this paper we calculated the normalized spin matrix element between arbitrary states of the
Ising model, the main result being the formulae (65), (66) and (78). We started with the result
(12) obtained in our previous paper [2] using the Sklyanin method of separation of variables by
which we obtained explicit wavefunctions in terms of the solutions of Baxter equations. The
result (12) was obtained for the general N = 2 BBS model which is related to a generalized
free-fermion Ising-type model (3). For this general model we were able to get the much
simpler formula (21) which however still involves a multiple sum over intermediate spins.
Since for the general model we cannot perform the summation, for the further calculation
we restricted ourselves to the Ising model with parameters (23). Performing a number of
technical manipulations, we succeed in calculating the multiple spin sums explicitly. Although
the intermediate formulae are quite involved, a number of surprising cancellations take place
which lead to the rather simple formula (61) for the spin matrix element square. This comes
still normalized to the auxiliary states involved in the method of separation of variables, but
it is not difficult to convert this result into the properly normalized matrix elements for the
model with periodic boundary condition. The final formula becomes more lengthy due to
normalization factors. We show by which transformations we get the recently conjectured
formula of Bugrij and Lisovyy. Our derivation provides a first proof of these formulae.
Another application of the formulae obtained in this paper is the result (78) for the spin matrix
elements for the finite quantum Ising chain in a transverse field.

The presence of degenerations in the spectrum for the special Ising parameter values
forced us in this case to normalize the Baxter equation solutions differently for different excited
states. The complexity of the formulae gives little hope that for more general parameter values
the multiple spin summations can be done in the near future, even if then the degeneration
problems may be avoided.
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Appendix. Proof of the summation formula

The aim of this appendix is to find a factorized expression for the sum

YD =
∑

ρl ,l∈D

∏
l∈D(−1)ρl ((−1)ρl rl + ξl)((−1)ρl rl + ζ )∏

l<m,l,m∈D((−1)ρl rl + (−1)ρmrm)
(A.1)

where ξl is given by (49) with (47). The result for ξl = ±αq̃l
is

YD =
∑

ρl ,l∈D

∏
l∈D(−1)ρl ((−1)ρl rl ± αq̃l

)((−1)ρl rl + ζ )∏
l<m,l,m∈D((−1)ρl rl + (−1)ρmrm)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
codd
D (b ± a)

⎛⎝∏
j∈D

eiq̃j ∓ ab

⎞⎠ ∏
l∈D(2rl/a)f

(D−1)/2
l g

(D−3)/2
l∏

l,m∈D,l<m(±hl,m)
D odd

ceven
D (a ± b)

⎛⎝a
∏
j∈D

eiq̃j ∓ b

⎞⎠ ∏
l∈D(2rl/a)(flgl)

D/2−1∏
l,m∈D,l<m(±hl,m)

D even

(A.2)

with D = |D|,
codd
D = α−(D−1)(D−3)/4(−β)−(D−1)2/4, ceven

D = α−(D−2)2/4(−β)−(D−2)D/4, (A.3)

and we use the abbreviations (54). Replacing ±αq̃l
→ ±βq̃l

in (A.2), see (47), (49), amounts
to α ↔ β in codd

D and ceven
D , and

(b ± a)

⎛⎝∏
j∈D

eiq̃j ∓ ab

⎞⎠ → (1 ∓ ab)

⎛⎝b
∏
j∈D

eiq̃j ± a

⎞⎠ D odd,

(a ± b)

⎛⎝a
∏
j∈D

eiq̃j ∓ b

⎞⎠ → (1 ∓ ab)

⎛⎝±ab
∏
j∈D

eiq̃j + 1

⎞⎠ D even.

In section 4.3 the last bracket in the numerator of (A.1) is also needed with +ζ = b/a

replaced by −ζ . However, in order not to complicate the formulae, we shall always use (A.1)
as it is written here. Since the only other b-dependence, which is in ξj and rj , is quadratic,
this can be adjusted at the end of the calculation just by changing the sign of b. Also, it is
sufficient to prove formula (A.2) for the case ξl = αq̃l

. Then the results for the cases ξl = −αq̃l

and ξl = ±βq̃l
can be obtained by simple transformations of the variables rl and b.

First, we find the recurrence relation for YD with respect to D = |D|. It relates this
quantity for D and D − 2. Then we verify (A.2) for small D. Finally, by explicitly inserting
our conjectured solutions (A.2) into the recursion relation we prove the expression. The cases
of D odd and even have to be treated separately, since we are dealing with a two-step relation.

A.1. Derivation of the recursion relation

This recurrence relation for YD is obtained by using the identity, compare (17),∑
i

∏
k(xi − yk)∏

j �=i (xi − xj )
= 0, (A.4)

21



J. Phys. A: Math. Theor. 41 (2008) 095003 G von Gehlen et al

when the number of xi exceeds the number of yk at least by two. Fix any index s ∈ D and
consider D + 1 values of xi and two values of yi : {y1, y2} = {−ξs,−ζ },
{x0, x1, . . . , xD} = {rs,−rs,−(−1)ρ1r1,−(−1)ρ2r2, . . . ,−(−1)ρs rs︸ ︷︷ ︸

omitted

, . . . ,−(−1)ρD rD}.

Since two parameters yk are chosen, we must have D � 3. Now we separate the two terms
in (A.4) which correspond to i = 0, 1 and present them as a summation over ρs ∈ {0, 1} for
{x0, x1} = rs(−1)ρs . Then (A.4) becomes∑
ρs

(−1)ρs (rs(−1)ρs + ξs)(rs(−1)ρs + ζ )∏
k �=s(rs(−1)ρs + rk(−1)ρk )

= −
∑
k �=s

2rs(−rk(−1)ρk + ξs)(−rk(−1)ρk + ζ )(
r2
k − r2

s

)∏
l �=k,s(−rk(−1)ρk + rl(−1)ρl )

. (A.5)

Now in (A.1) we separate the summation over a certain fixed discrete variable ρs and use the
identity (A.5) to replace the summation over ρs ∈ {0, 1} by a summation over k. After this,
we move the summation over k to the front of formula (A.1) and collect the factors depending
on ρk:

YD = −
∑
k �=s

∑
ρl∈D/s,k

∏
l �=s,k(−1)ρl (rl(−1)ρl + ξl)(rl(−1)ρl + ζ )∏

l<m,l,m�=s,k(rl(−1)ρl + rm(−1)ρm)

×
∑
ρk

(−1)ρk (rk(−1)ρk + ξk)(rk(−1)ρk + ζ )∏
l �=k,s(rk(−1)ρk + rl(−1)ρl )

2rs(−rk(−1)ρk + ξs)(−rk(−1)ρk + ζ )(
r2
k − r2

s

)∏
l �=k,s(−rk(−1)ρk + rl(−1)ρl )

.

(A.6)

Now after multiplication in the second line of (A.6), we perform the summation over ρk ∈ {0, 1}
by means of the relation∑

ρk

(−1)ρk (rk(−1)ρk + ξk)(−rk(−1)ρk + ξs) = −2rk(ξk − ξs).

Finally, we get the desired recursion relation, valid for any fixed index s ∈ D:

YD =
∑
k �=s

YD/k,s

4rkrs(
r2
k − r2

s

) (ζ 2 − r2
k

)
(ξk − ξs)∏

l �=k,s

(
r2
l − r2

k

) , (A.7)

where YD/k,s is just the original YD with the indices k and s removed from D.
Since (A.7) is a two-step difference equation, in general it has two independent solutions

Y
(1)
D and Y

(2)
D . The quantity (A.1) is equal to a linear combination of these solutions,

YD = c1Y
(1)
D + c2Y

(2)
D and the constants c1, c2 are fixed by calculating YD explicitly for

small D.
In the following, using (A.7), we give the details of the proof of (A.2) for the case D odd.

The derivation for D even proceeds analogously.

A.2. Proving the summation formula for D odd

For D = 1 we start calculating directly (A.1), αs = αq̃s
:

Y{s} =
∑
ρs

(−1)ρs (rs(−1)ρs + αs)(rs(−1)ρs + b/a) = 2rs

(b + a)(eiq̃s − ab)

a(eiq̃s − a2)
,
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which proves (A.2) for this particular case. This result, together with the recursion relation
(A.7), defines YD for odd D uniquely. For example, for the set D = {s1, s2, s3}, the recursion
relation (A.7) with selected s = s3 gives

Y{s1,s2,s3} = Y{s2}
4r1r3(

r2
1 − r2

3

) (ζ 2 − r2
1

)
(α1 − α3)(

r2
2 − r2

1

) + Y{s1}
4r2r3(

r2
2 − r2

3

) (ζ 2 − r2
2

)
(α2 − α3)(

r2
1 − r2

2

)
= (b + a)

∏3
l=1(2rlfl)

a3(−β)
∏

1�l<m�3 hl,m

(
eiq̃1(eiq̃2 − ab)h2,3

(eiq̃2 − eiq̃1)
+

eiq̃2(eiq̃1 − ab)h1,3

(eiq̃1 − eiq̃2)

)

= (b + a)
∏3

l=1(2rlfl)

a3(−β)
∏

l<m hl,m

(
3∏

l=1

eiq̃l − ab

)
, (A.8)

where we used

αk − αs = −αρk,s, ζ 2 − r2
k = αβ eiq̃k

a2fkgk

, r2
l − r2

k = αβhl,k

flfk

ρl,k (A.9)

with ρk,s = (eiq̃k − eiq̃s )/(gkgs). Observe that the big bracket in the second line of (A.8)
factorizes and leads to a result symmetrical in the three indices. The result obtained in (A.8)
proves (A.2) for D = 3 and ξl = αq̃l

. We can easily continue this recursive procedure to
conjecture the formula (A.2) for odd D. To prove it, it is enough to show that the right-hand side
of (A.2) satisfies the recursion relation (A.7). The right-hand side of (A.2) can be presented
as YD = c1Y

(1)
D + c2Y

(2)
D , where c1 = −(a + b)ab, c2 = a + b and

Y
(1)
D = codd

D

∏
l(2rl/a)f

(D−1)/2
l g

(D−3)/2
l∏

l<m hl,m

, Y
(2)
D = Y

(1)
D

∏
l

eiq̃l . (A.10)

Thus to prove (A.2), it suffices to prove that Y
(1)
D and Y

(2)
D satisfy (A.7).

Let us prove that Y
(1)
D satisfies the recurrence relation (A.7) with ξl = αq̃l

. Using the
elementary relation codd

D−2

/
codd
D = −αD−3βD−2 and (A.9), we reduce the problem to the proof

of the identity∏
l(2rl/a)f

(D−1)/2
l g

(D−3)/2
l∏

l<m hl,m

=
∑
k �=s

∏
l �=k,s(2rl/a)f

(D−3)/2
l g

(D−5)/2
l∏

l<m;l,m�=k,s hl,m

×4rkrs

a2

fsf
D−2
k gD−3

k eiq̃k

hs,k

∏
l �=k,s

flgl

hl,k(eiq̃l − eiq̃k )
. (A.11)

We see that all rl and the fl, gl, hl,m with l, m �= k, s match between both sides of (A.11),
leaving us with

(fsgs)
(D−3)/2∏

l �=s hl,s

=
∑
k �=s

(fkgk)
(D−3)/2 eiq̃k

hk,s

∏
l �=s,k(e

iq̃l − eiq̃k )
, (A.12)

which is equivalent to the interpolation identity (A.4) used here for the following choice of
the parameters: xk = eiq̃k for k ∈ D/s, xs = e−iq̃s ,

{y0, y1, . . . , yD−3} = {0, a2, . . . , a2︸ ︷︷ ︸
(D−3)/2times

, a−2, . . . , a−2︸ ︷︷ ︸
(D−3)/2times

}.

The proof that Y
(2)
D satisfies the recurrence relation (A.7) reduces to the same interpolation

identity, but with y0 omitted. This proves (A.2) for D odd and ξl = αq̃l
.

As was explained before, the change of the sign at ζ in (A.1) can be adjusted by changing
the sign of b in the final formula. Similarly, the change of the sign at ξl can be adjusted by

23



J. Phys. A: Math. Theor. 41 (2008) 095003 G von Gehlen et al

the simultaneous change of the signs of rl and ζ . Finally, the transformation b → 1/b leads
to rl → rl/b

2,−αq̃l
→ βq̃l

/b2. This allows to find (A.1) at ξl = βq̃l
if we know (A.1) at

ξl = −αq̃l
. The mentioned transformations cover all the cases of (A.1) for D odd.
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